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Abstract

The impulse response method is widely used for heat transfer analysis in
turbomachinery applications. Traditionally, the 1D method assumes a linear
time invariant, isotropic, semi-infinite block and does not accurately model
the behaviour of laminated materials. This paper evaluates the error intro-
duced by the single layer assumption and outlines the required modifica-
tions for multilayer analysis.

The analytic solution for an N layer, semi-infinite laminate is presented.
Adapted multilayer basis functions are derived for the impulse response
method and used to evaluate the impact of uniform, isotropic assumptions.
A numerical solution to the laminate problem is also presented. A penta-
diagonal inversion algorithm, for a modified Crank-Nicolson scheme, is
evaluated for fast stable implementation of multilayer simulation. The
scheme shows comparable performance to the impulse response, whilst
removing the requirement for linear time invariance.

The methods are demonstrated in the case of analysing a thin film gauge,
used in laboratory analysis of heat transfer in a turbine nozzle guide vane.
Thin film gauge manufacturing techniques have advanced significantly in
recent years. Advanced multilayer constructions are now used however,
post-processing commonly relies on outdated single layer methods. This
paper provides a universal methodology, required to analyse modern-day
multilayer heat transfer measurements.

Introduction

High speed linear cascades are often used to analyse aerodynamic per-
formance of turbine blades, nozzle guide vanes and cooling systems.
Compressed air is passed through a heater mesh to achieve near uniform
step change in temperature across the operational section. Shown in
Figure 1, the heated air is passed through the test cascade, optionally
with cooling flow, to conduct heat transfer measurements. Alongside
standard cascade measurements, thin films are adhered to the test
section to allow high speed surface temperature measurement, without
impeding design form or profile. The data is routinely post-processed
using the impulse response method. A known temperature and heat flux
signal, commonly the unit step solution, is used to derive a signal filter
for heat flux. This filter is then applied to the measured temperature
data to infer the surface heat flux in the test cascade.
The derivation of the basis functions, used to construct the filter,

assumes linear time invariance, uniform isotropic materials and surface
normal heat transfer. These assumptions lead to limitations in the
impulse response method, primarily the semi-infinite limit which caps
the permitted test duration by the time for heat penetration through the
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material. The Schultz-Jones limit is commonly used, corresponding to a less than 1% back surface to front
surface heat flux ratio Schultz and Jones (1973). This limit is a useful guide but is only valid in the case of
uniform materials, planar surfaces, normal heat transfer and unit step heat flux. Care should be taken when
applying this limit to convection tests on free-form geometry, when none of these underlying assumptions hold.
In contrast, numerical methods can handle much longer duration tests and, provided a back boundary condi-

tion is known, can post-process data beyond the semi-infinite limit. This does however necessitate the measure-
ment of the back surface, often not accessible in many cascade designs. In the case of nozzle guide vane analysis,
the “back surface” is considered the camber line of the vane due to heat penetration from both the pressure and
suction surfaces.
Heat transfer test articles are often assemblies including laminates, parts or insulation with differing material

properties. Traditional response methods assume a uniform isotropic material and thus do not accurately model
these systems. The errors caused by this assumption are evaluated, along with the modifications necessary to
accurately use the impulse response in multilayer analysis. An analytic solution and a new numerical method are
both investigated to solve and validate the laminate problem. Both solution methods are demonstrated in the
case of evaluating heat flux in thin film laboratory analysis.

1D multilayer analytic methodology

A variety of methods exist to analyse 1D transient heat transfer. The analytic derivation for several cases can be
found in the Conduction of Heat in Solids by Carslaw and Jaeger (1947). Electrical analogies and thermal
network models are commonly employed to approximate the material behaviour Shafaq et al. (2016). The Cook
and Felderman (1966) piecewise linear approximation algorithm has been widely used. Improvements in com-
puting hardware has seen a rise in both explicit and implicit numerical methods Walker and Scott (1998),
Recktenwald (2011), and Bertolazzi et al. (2012) evaluated the use of finite elements. Oldfield (2008) presented
a fast fourier transform implementation of the impulse response method, which is extensively used at the Oxford
Thermofluids Institute (OTI). All of these methods have been demonstrated in the case of single and two layer
analysis, but few have been stretched to the case of complex multilayer laminates.
Doorly and Oldfield (1987) showed that for long duration tests, when heat penetrates to the back substrate, a

laminate construction has a significantly different behaviour to the single material case. To account for this,
Oldfield (2008) published the analytic solution for a two-layer laminate with a simple kapton thin film and
metal test section. His dual layer analytic solution for surface temperature has a more complicated basis function

Figure 1. Example high speed linear cascade facility instrumented with thin film gauges on the passage endwall,

with typical temperature measurement showing the used data window for heat flux calculation Shaikh (2020).
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and many users choose to ignore this effect to simplify the analysis. Typically a single layer approximation is
used, building the response functions with the material properties of the test geometry only, ignoring the thin
film. It is common to select test materials with very low thermal diffusivity to impede heat flow into the material,
thus increasing the time for heat penetration to the back surface, allowing a longer duration test. The bulk prop-
erties are thus similar to that of the thin film, and forms the justification for the single layer simplification.
Thin film technology has advanced significantly since the work of Doorly. Collins et al. (2015), Shaikh

(2020) introduced new manufacturing techniques using commercial flexible element PCBs, Figure 2. The
upgraded manufacturing methods introduce interstitial or coverlay laminates in the thin film construction, which
enables complex circuitry to be embedded in the PCB. Combined with high accuracy production tolerances,
these new designs offer a higher density of thin films on the active surface. Along with the internal adhesive,
main fixing adhesive and test geometry substrate, modern thin film analysis should always be considered a multi-
layer system. The following section outlines the general equation for the surface temperature of an N-layer lamin-
ate with applied unit surface heat flux.

Boundary condition method

Following the process used by Oldfield in the two layer case, the laminate basis functions are derived starting
with a Laplace transform of the Fourier conduction equation. Beginning at the lower most laminate layer, N,
interface boundary conditions are propagated upwards through the laminate to the known upper surface bound-
ary condition, Figure 3. The method assumes the back substrate can be considered semi-infinite, the heat flow is
one dimensional and the system is initially uniform zero temperature.

@2ϕ

@x2
� s
α
ϕ(x, s) ¼ 0 (1)

Figure 3. Section through a multilayer, semi-infinite laminate showing boundary and continuity conditions.

Figure 2. Schematic of a modern day thin film laminate construction used at the OTI.
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ϕN (x, s) ¼ AN (s) e�x
ffiffiffiffiffi
s=α

p
(2)

ψN (x, s) ¼ k
ffiffiffiffiffiffiffi
s=α

p
AN (s) e�x

ffiffiffiffiffi
s=α

p
(3)

The following interface boundary conditions are defined, with variable substitutions:
An ¼ An(s), Bn ¼ Bn(s), λn ¼

ffiffiffiffiffiffiffiffiffi
s=αn

p
• Temperature continuity

AN�1 e�xN�1λN�1 þ BN�1 exN�1λN�1 ¼ AN e�xN�1λN (4)

• Heat flux continuity

kN�1λN�1AN�1 e�xN�1λN�1 � kN�1λN�1BN�1 exN�1λN�1 ¼ kN λNAN e�xN�1λN (5)

Introducing the variables σm,n and γm,n

σm,n ¼ knλn
kmλm

, γm,n ¼
1� σm,n
1þ σm,n

(6)

Multiplying 4 by σ and subtracting 5, the following relation is found, allowing BN�1 to be found in terms of
AN�1

(1� σN�1,N )AN�1 e�xN�1λN�1 ¼ (1þ σN�1,N )BN�1 exN�1λN�1 (7)

BN�1 ¼ AN�1 e�2xN�1λN�1 γN�1,N (8)

Moving up one layer in the laminate stack, the temperature and heat flux conservation is given by

Temperature continuity AN�2 e�xN�2λN�2 þ BN�2 exN�2λN�2 ¼ AN�1 e�xN�2λN�1 þ BN�1 exN�2λN�1 (9)

Heat flux continuity kN�2λN�2AN�2 e
�xN�2λN�2 � kN�2λN�2BN�2 e

xN�2λN�2 ¼
kN�1λN�1AN�1 e

�xN�2λN�1 � kN�1λN�1BN�1 e
xN�2λN�1

(10)

Substituting variables σ, λ and BN�1, then multiplying 9 by σ, the two continuity equations above become 11
and 12. Noting that xn is the spatial position of the back surface of layer n, (xN�1 � xN�2) defines the thickness
of layer N � 1.

σN�2,N�1 AN�2 e�xN�2λN�2 þ σN�2,N�1 BN�2 exN�2λN�2 ¼
σN�2,N�1 AN�1 e�xN�2λN�1 [1þ γN�1,N e�2(xN�1�xN�2)λN�1 ]

(11)

AN�2 e�xN�2λN�2 � BN�2 exN�2λN�2 ¼
σN�2,N�1 AN�1 e�xN�2λN�1 [1� γN�1,N e�2(xN�1�xN�2)λN�1 ]

(12)

Multiplying the temperature Equation 11 by the RHS [ ] term in the flux equation and multiplying the flux
Equation 12 by the RHS [ ] term in the temperature equation. The RHS of the above two equations become
equal and 11 is equated to 12. This can be rearranged to find BN�2 in terms of AN�2

BN�2 ¼ AN�2 e�2xN�2λN�2
(1� σN�2,N�1)þ (1þ σN�2,N�1) γN�1,N e2xN�2λN�2

(1þ σN�2,N�1)þ (1� σN�2,N�1) γN�1,N e2xN�2λN�2
(13)
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This equation has the same form as 8 and can be written

BN�2 ¼ AN�2 e�2xN�2λN�2 ηN�2,N�1 (14)

where ηN�2,N�1 ¼
γN�2,N�1 þ γN�2,N�1 e

�2(xN�1�xN�2)λN�1

1þ γN�1,N γN�1,N e�2(xN�1�xN�2)λN�1

The process from 9 to 14 can be repeated for all additional layers in the laminate. For each layer above N � 2,
the relation ηm,mþ1 is based on the value of η in the below layer and γ of the current layer. Once this process has
propagated to the top surface of the material stack. The surface temperature and flux boundary conditions can be
applied.

ϕ(0, s) ¼ A1 þ B1 (15)

ψ(0, s) ¼ k1λ1A1 � k1λ1B1 (16)

Substituting B1 from 14 into the above surface conditions gives

A1 ¼ ψ(0, s)
k1λ1

1
1� η1,2 e�2x1λ1

� �
, B1 ¼ ψ (0, s)

k1λ1

η1,2 e
�2x1λ1

1� η1,2 e�2x1λ1

� �
(17)

ϕ(0, s) can then be rearranged and expanded as a power series, giving the final Laplace domain surface tem-
perature solution.

Power series,
1

1� z
¼

X1
i¼0

zi; jzj , 1 (18)

ϕ(0, s) ¼ ψ(0, s)
k1λ1

1þ 2η1,2 e
�2x1λ1

1� η1,2 e�2x1λ1

� �
(19)

ϕ(0, s) ¼ ψ0

k1λ1
1þ 2

X1
i¼1

ηi1,2 e
�2x1λ1i

" #
(20)

Expanding the numerator and denominator as separate binomial series, η can be expressed as a product of
summations.

ηim,mþ1 ¼
Xi

j¼0

i

j

� �
γi�j
m,mþ1 η

j
mþ1,mþ2 e

�2j(xmþ1�xm)λmþ1

" #

�
X1
k¼0

i þ k � 1

k

� �
(�1)k γkm,mþ1 η

k
mþ1,mþ2 e

�2k(xmþ1�xm)λmþ1

" # (21)

The above product can be combined to give an infinite sum of a finite series. For progressive terms in the
infinite summation, the exponential term tends to zero. The infinite series can therefore be accurately
approximated by a truncated finite series of length k. Truncation is recommended when the value of η falls
below a defined negligible value, this is material dependent and should be defined on a case by case basis. A
typical value for negligible consideration is a summation term ,10�6, typically corresponding to a trunca-
tion index of k ¼ 5.

ηim,mþ1 ¼
X1
k¼0

Xi

j¼0

i
j

� �
i þ k � 1

k

� �
(�1)k γi�jþk

m,mþ1 η
jþk
mþ1,mþ2 e

�2(kþj)(xmþ1�xm)λmþ1

" #
(22)
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The formulation of ηm,mþ1 depends on the the next layer value of ηmþ1,mþ2. This variable must therefore be
progressively substituted until the solution propagates down through the laminate. Each time this variable is
replaced, a dual summation of the ηmþ1,mþ2 term in the next layer is required. This substitution is continued
until m . N � 2 where the value of η depends only on γ and is fully defined by the material properties. This
approach leads to a final solution with 1þ 2(N � 2) nested summations containing the material properties and
thickness of each laminate layer.
The above solution is rather involved and becomes increasingly unwieldy as the laminate grows. Due to the

effect of layer count on the number of nested summations, implementing this approach is non-trivial, even on
simple laminates. The simulation of an 8-layer case, required for more complex thin film constructions, can take
several hours to process due to the nested loop formulation. Practical use is therefore not recommended for cases
other than simple laminates with low layer count. In the single and two layer cases, the nested summations drop
out, leaving a simplified form identical to those presented by Oldfield.

Transmission-reflection method

When handling more complex constructions, an alternative more user friendly method is preferred. In practice,
many of the summation terms in the above solution can be considered negligible and only the significant terms
need be considered. Similar to the transmission and reflection of electromagnetic waves at a material interface
(Lekner, 2016), heat penetration through a laminate can be solved in the same way. The incident heat at the
material interface is partially transmitted to the next material and partially reflected to the original material. This
is seen as a change in the thermal gradient, affecting the heat flux through each layer. These split thermal profiles
continue to propagate through the laminate, splitting again at each interface. Beyond the secondary reflections,
the magnitudes can be considered negligible and a simplified approximate solution can be found. Solved at the
surface, x ¼ 0, the temperature profile is simply the sum of the incident function and any reflected terms seen at
this location. The transmission-reflection process for a three layer laminate is outlined in Figure 4.
Solving the direct unit step analytic solution adds unnecessary complication. Instead, any solution pair for

temperature and heat flux may be found, then simply converted to the unit step solution afterwards if required.
This is easily done using the impulse response; the filter H (s) from the known heat flux solution to a unit step
can be found, then applied to the corresponding known temperature. This method allows the easiest analytic
solution pair to be used and further simplifies the approach. Similar to the boundary condition solution, this is
best implemented in the Laplace domain then inverted later to find the time domain form.

ϕunit step(s) ¼ H (s):ϕknown(s); where H (s) ¼ ψunit step(s)

ψknown(s)
(23)

Any definition for the incident function, I1, may be selected. The parabolic surface temperature for an isotropic
material is recommended as the simplest form, and yields the easiest final temperature and heat flux solutions.

Figure 4. Transmission-Reflection method applied to a three layer laminate, showing the primary and secondary

reflections.
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I1(x, s) ¼ 1
s3=2

e�x
ffiffiffiffiffiffi
s=α1

p
(24)

At the first interface, x ¼ x1, the incident function is split according the transmission and reflection coefficients.

CTij ¼ 2ni
ni þ nj

; CRij ¼
ni � nj
ni þ nj

; where ni ¼ ki=
ffiffiffiffi
αi

p
(25)

The transmitted part, J1, progresses to the next material and is formed of the following components

• the transmission coefficient, CT 12

• the initial surface function, 1=s3=2

• the diffusion in the current layer, exp �[x � x1]
ffiffiffiffiffiffiffiffiffi
s=α2

p� �
• the diffusion from the previous layer, exp �x1

ffiffiffiffiffiffiffiffiffi
s=α1

p� �

J1(x, s) ¼ CT 12
1
s3=2

e�(x�x1)
ffiffiffiffiffiffi
s=α2

p
e�x1

ffiffiffiffiffiffi
s=α1

p
(26)

The reflected part, R1, travels backwards in the first material and is formed of the following components

• the reflection coefficient, CR12

• the initial surface function, 1=s3=2,
• the diffusion in this layer, exp �[2x1 � x]

ffiffiffiffiffiffiffiffiffi
s=α1

p� �

R1(x, s) ¼ CR12
1
s3=2

e�(2x1�x)
ffiffiffiffiffiffi
s=α1

p
(27)

Note that at the first boundary interface, x ¼ x1, the following equality applies

I1(x1, s)þ R1(x1, s) ¼ J1(x1, s) (28)

The transmitted part then progresses to the next material. Applying the reflection and transmission coefficients
at each subsequent boundary, the remaining reflection terms from Figure 4 can easily be found

R2(x, s) ¼ CT 12 CR23 CT 21
1
s3=2

e�(2x1�x)
ffiffiffiffiffiffi
s=α1

p
e�2(x2�x1)

ffiffiffiffiffiffi
s=α2

p
(29)

R212(x, s) ¼ CT 12 CR23 CR21 CR23 CT 21
1
s3=2

e�(2x1�x)
ffiffiffiffiffiffi
s=α1

p
e�4(x2�x1)

ffiffiffiffiffiffi
s=α2

p
(30)

The final surface temperature solution, ϕ(0, s), is given by the sum of all terms present at this location, x ¼ 0.

ϕ(0, s) ¼ I1(0, s)þ R1(0, s)þ R2(0, s)þ R212(0, s) (31)

The heat flux, defined by �k1 dT =dx, can be found by spatial differentiation

ψ(0, s) ¼ k1ffiffiffiffiffi
α1

p ffiffi
s

p
[I1(0, s)� R1(0, s)� R2(0, s)� R212(0, s)] (32)

The following Laplace transform inversions can be used to find the time domain solution for heat flux and
temperature (Abramowitz and Stegun, 1972).

1
s
e�a

ffi
s

p
, erfc

a
2

ffiffi
t

p
� �

1
s3=2

e�a
ffi
s

p
, 2

ffiffiffi
t
π

r
exp � a2

2t

� �
� a erfc

a
2

ffiffi
t

p
� � (33)
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The time domain form for both temperature and heat flux are therefore a sum of factored exponential and
complimentary error functions. The factors are given by the product of transmission and reflection coefficients,
the erfc and exp terms are given by the sum of the dxi=

ffiffiffiffi
αi

p
ratio in each layer passed through. The example

three layer solution for surface heat flux and surface temperature are given below.

q(0, t) ¼ k1ffiffiffiffiffi
α1

p erfc(0)� CR12 erfc
a

2
ffiffi
t

p
� �

�
�

CT 12 CR23 CT 21 erfc
b

2
ffiffi
t

p
� �

�CT 12 CR23 CR21 CR23 CT 21 erfc
c

2
ffiffi
t

p
� �� (34)

T (0, t) ¼ 2

ffiffiffi
t
π

r
þ CR12 2

ffiffiffi
t
π

r
exp � a2

2t

� �
� a erfc

a
2

ffiffi
t

p
� �� �

þ CT 12 CR23 CT 21 2

ffiffiffi
t
π

r
exp � b2

2t

� �
� b erfc

b
2

ffiffi
t

p
� �� �

þ CT 12 CR23 CR21 CR23 CT 21 2

ffiffiffi
t
π

r
exp � c2

2t

� �
� c erfc

c
2

ffiffi
t

p
� �� �

where a ¼ 2x1ffiffiffiffiffi
α1

p , b ¼ 2x1ffiffiffiffiffi
α1

p þ 2(x2 � x1)ffiffiffiffiffi
α2

p , c ¼ 2x1ffiffiffiffiffi
α1

p þ 4(x2 � x1)ffiffiffiffiffi
α2

p

(35)

For higher layer counts, internal reflections occur at all layers in both the upward and downward direction.
To accumulate all secondary reflections, three nested for loops are required in the analysis code.

• Loop one, define all first upward reflections, one at each material interface below the surface, i = 1: N − 1.
• Loop two, define all first downward reflections, one at each layer above the current ith layer, j ¼ 1: i � 1.
• Loop three, define all second upward reflections, one at each layer below the current jth layer,

k ¼ j þ 1: N � 1.

The product of each transmission and reflection coefficient, along with the factors for the erfc and exp terms,
can be routinely collected within each loop. This method can thus be programmed with a static code structure
and is substantially easier to implement than the previously discussed boundary condition solution, with
1þ 2(N � 2) nested summations. The transmission-reflection method is universal, allowing a laminate of any
layer count to be automatically handled by the simple loop coefficients. The straightforward three loop imple-
mentation yields sufficient accuracy in this case however, if further accuracy is desired, users may add additional
loop pairs to capture tertiary or higher order reflection terms.
Higher layer count laminates are handled in exactly the same way. A four layer laminate is shown in Figure 5,

highlighting the captured reflection terms by the simple three loop model. Similar to the example three layer case
above, the surface functions are given by the sum of terms present at x ¼ 0.

Figure 5. Reflection paths in a four layer laminate that are automatically handled by the standard three loop method.
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ϕ(0, s) ¼ I1(0, s)þ R1(0, s)þ R2(0, s)þ R212(0, s)þ R213(0, s)þ R312(0, s)þ R313(0, s)þ R323(0, s) (36)

ψ(0, s) ¼ k1ffiffiffiffiffi
α1

p ffiffi
s

p
[I1(0, s)� R1(0, s)� R2(0, s)� R212(0, s)� R213(0, s)� R312(0, s)� R313(0, s)� R323(0, s)]

(37)

Analytic results and discussion

The analytic solutions using the transmission-reflection method have been evaluated for a single, two, three and
five layer laminate, Figure 6, with applied unit step surface heat flux ψ(0, s) ¼ 1=s. The three and five layer cases
examine the construction of a laboratory thin film test, where a polyamide kapton circuit is adhered to a 3D
printed SLA test geometry. The material properties considered in this analysis are shown in Table 1.
The kapton and adhesive layers are significantly thinner than the SLA geometry and, under traditional applica-

tion of the impulse response method, would be ignored. Figure 7 shows the surface temperature function
required to generate unit step heat flux under different combinations of these materials. Due to the lower
thermal product of kapton and the fixing adhesive, a higher surface temperature is required to achieve unit step
heat flux in these materials.
The impulse response filter is defined by a known basis function pair for temperature and heat flux. If the

upper layers are ignored, an incorrect surface temperature function is used to solve the filter. The error is thus
directly built into the analysis filter and effects the accuracy of the post-processing only.
When applying the impulse response method, the physically measured surface temperature is post-processed

with the response filter to find the heat flux. The impact of the embedded error is thus seen in the calculated
flux value. Figure 7 shows the effect when the response filter is calculated using each of the different layer

Figure 6. The four analysis cases showing the material construction for the different layer models.

Table 1. Material properties of the typical construction layers used in a laboratory thin film test.

Material Δx (μm) α (m2=s) k [W=mK] k=
ffiffiffi
α

p

SLA 2500+ 0:00 9:81� 10�8 0.176 561.9

Kapton 50:8+ 1:27 7:76� 10�8 0.120 430.7

Coverlay 12:7 + 0:3175 8:17� 10�8 0.120 419.9

Inner Adhesive 12:7
þ0:00
�2:00

10:9� 10�8 0.230 698.0

Fixing Adhesive 50:0+ 5:00 8:21� 10�8 0.160 558.4
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models. In all cases the calculated filter is applied to the five layer surface temperature, T5layer. This solution best
replicates the true geometry and thus best replicates the actual surface temperature that would be measured in a
unit step heat flux test.
As seen in Figure 7, when using the simplified filters (h1, h2, h3) the heat flux is overestimated, particularly

during the early part of the analysis. This error reduces with time as the thermal profile penetrates past the add-
itional layers and the back substrate material dominates. The value and duration of the large error region
depends on the material properties and thermal penetration time of the additional laminate layers and must be
evaluated on a case by case basis.
In this typical thin film construction, the impact of a single layer assumption is significant for the full duration of

the test. Using the simplified impulse response leads to large errors in the calculated heat flux. Peak error in the heat
flux calculation is 30.47%, reducing to 3.62%, with a time averaged value of 6.71%. Despite the thin nature of the
additional layers, and approximately similar thermal properties, the error caused by simplifying the post-processing
method is significant. When using the two or three layer impulse response, the error is notably better than the single
layer case. In all cases where the test article has a laminate construction, with differing material properties, the impulse
response should be derived from the multilayer system response to prevent large errors being inherited in the filter.
The discussed example focuses on the calculation of surface heat flux from surface temperature. It should

be noted that the impulse response can be taken between any two analytic temperature or heat flux functions

Figure 7. Surface temperature required for unit step heat flux, with the derived impulse response filter for the four

different laminate layer cases and the calculated heat flux when applying each response function to T5.
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i.e. one could equally map the temperature and heat flux between different layers in the laminate and infer pos-
itional offset in the response function. The transmission-reflection method is equally applicable by simply collect-
ing the active terms at each spatial position. Provided the full system remains linear time invariant, the laminate
methodology is not restricted to surface calculations and fully supports subsurface embedded temperature
measurements.

Manufacturing assessment

The analysis above requires detail knowledge of the thermal properties and thickness of each layer. Accurate meas-
urement of the thermal conductivity, especially in thin polyamide materials, is well known to have notable error
bounds. Li (1990) estimates the statistical uncertainty of TC-1000 thermal comparator measurement techniques to
be in the region +15% on films above 25:4 μm. Noting that the square root of the thermal conductivity is always
referenced in the formulae, the full impact of this uncertainty is not seen in the heat flux calculation.
The formulae include the thermal product of the material k=

ffiffiffi
α

p ¼ ffiffiffiffiffiffiffiffi
ρkcp

p
. Measurement of the additional

properties is significantly more accurate; density measureme +0:05% (American Society for Testing and
Materials, 2012) and specific heat capacity measurements using DSC methods are within nts to ASTM D-1505
are within +3% Bernardes et al. (2020). Taking the maximum and minimum values of each property in the
thermal product, the uncertainty in this value can be calculated as +9:4%. Given the Laplace domain transfer
function from temperature to flux is factored directly by the thermal product, this corresponds to the single layer
material uncertainty in the impulse response calculation.
Modern-day thin films are manufactured as part of a flex circuitry panel, with several sensors cut from the

same manufacturing run. The construction tolerances in Table 1 are considered. These are consistent across the
panel and in cases where higher accuracy is required, a sacrificial sensor or dedicated coupon may be sectioned to
measure the executed laminate thickness. The substrate layer is considered semi-infinite, so thickness tolerances
of this layer may be ignored.
Table 2 shows the calculated bounds of the uncertainty caused by material and construction tolerances in the

five layer laminate case. In each construction, the same surface temperature was applied to the laminate, corre-
sponding to the profile for unit step heat flux in the nominal tolerance case T5, shown in Figure 7. The calcu-
lated heat flux, for each combination of material and thickness tolerance, was compared to the true unit step
value. Table 2 shows the peak difference and RMSE in the calculated heat flux, when using the impulse response
method. As seen in the data, the impact of thickness tolerance is negligible, peak 0.34% and RMSE 0.16%, and
could reliably be ignored in thin film testing.
The material property effects dominate, with a peak discrepancy of 10.35% and RMSE 9.82%. This is slightly

higher than the thermal product uncertainty, 9.4%, due to the additional effects in the transmission and reflec-
tion coefficients at the material interfaces. However, the thermal product value gives a good indication of the
behaviour in the full laminate.

Table 2. Peak error and Root Mean Square Error in the calculated heat flux, caused by material
property and layer thickness tolerances, compared to the true unit step response.

Material tolerance

min nominal max

Thickness
tolerance

min −0.1009 −0.0005 0.0934

0.0967 0.0002 0.0898

nominal −0.1004 0.0 0.0937

0.0968 0.0 0.0896

max −0.1035 −0.0034 0.0900

0.0982 0.0016 0.0881
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The uncertainty values are comparable in magnitude to the time averaged error of the single layer assumption.
However, even the combined worst case manufacturing uncertainty, 10.35%, is significantly less than the peak
error, 30.47%, introduced by using the incorrect layer construction for the impulse response calculation. Where
possible the material properties should be closely controlled however, priority should be given to removing the
known error source and using the correct multilayer response filter.

1D multilayer numerical methodology

The derived analytic solutions are rather involved, particularly for the boundary condition method. In addition,
these solutions have limitations in the handling of time varying material properties and back surface boundary
conditions. Direct numerical methods allow for both of these limitations to be bridged and can offer comparable
accuracy at the cost of computational effort. Battisti and Bertolazzi (n.d.) used a 1D finite element scheme with
temperature dependent material properties. This method was validated on a single layer isotropic material and
showed comparable accuracy.
Recktenwald presented several numerical methods, with differing stability dependent on the spatial and tem-

poral discretisation (Recktenwald, 2011). The Crank-Nicolson algorithm was demonstrated with unconditional
stability. The method uses a weighted average of the forward and backward time difference on the discrete centre
space calculation. It is implicit with second order truncation errors in both time O(Δt2) and space O(Δx2).
Although computationally more expensive per time step, its unconditional stability can allow for larger time
steps without divergence.

Crank� Nicolson scheme,
@T
@t

j
tm,xi

¼ α

2
@2T
@x2

j
tm,xi

þ @2T
@x2

j
tm�1,xi

� �
(38)

When separated into the temporal components, the Crank-Nicolson method results in a tri-diagonal matrix
equation on either side of the equality. This is commonly solved using a row reduction matrix inversion on the
left hand side. The matrix is easily inverted using the Thomas algorithm or equivalent, which is computationally
efficient with O(n2x ) and available via Mathworks Exchange Holmes (2021).
Extending this method to a multilayer system, one must ensure that the heat flux is conserved at the interface

boundaries. Hickson et al. (2011) presented a Taylor series expansion method for ensuring flux continuity at a
laminate interface. Coefficients of nodes at locations [�2Δx,�Δx, 0, Δx, 2Δx] are used, where Δx is the dis-
tance from the interface boundary. Adapted to the Crank-Nicolson scheme, this can be concisely written as a
penta-diagonal matrix. To maximise sparsity and reduce the computational effort, the bulk of the solver follows
the traditional Crank-Nicolson method, with only the interface nodes modified for cross boundary heat flux con-
tinuity. The solver is applied to a 1D discretised domain with time stamps, m, and spatial positions, i.
Below is the modified multilayer penta-diagonal scheme, for a discretised domain [i,n], with a laminate

boundary at i = 3:

a0 b0 0 0 0 0 0 � � �
c1 a1 b1 0 0 0 0 � � �
0 c2 a2 b2 0 0 0 � � �
0 e�3 c�3 a�3 b�3 d �

3 0 � � �
0 0 0 c4 a4 b4 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA

T m
0

T m
1

T m
2

T �m
3

T m
4

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

f0 �b0 0 0 0 0 0 � � �
�c1 f1 �b1 0 0 0 0 � � �
0 �c2 f2 �b2 0 0 0 � � �
0 �e�3 �c�3 f �3 �b�3 �d �

3 0 � � �
0 0 0 �c4 f4 �b4 0 � � �
..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

.

0
BBBBBBBBB@

1
CCCCCCCCCA

T m�1
0

T m�1
1

T m�1
2

T �m�1
3

T m�1
4

..

.

0
BBBBBBBBB@

1
CCCCCCCCCA

(39)
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where: � indicates a boundary interface and,

ai ¼ 1
Δt

þ α

Δx2
, bi ¼ ci ¼ � α

2Δx2
, di ¼ ei ¼ 0, fi ¼ 1

Δt
� α

Δx2

a1 ¼ aN ¼ 1, b0 ¼ c0 ¼ bN ¼ cN ¼ 0, a�i ¼ f �i ¼ 1
Δt

b�i ¼
�4kiþ1αi þ 2(3ki þ kiþ1)αiþ1

12(ki þ kiþ1)
, c�i ¼ 2(ki þ 3kiþ1)αi � 4kiαiþ1

12(ki þ kiþ1)

d �
i ¼ kiþ1αi � (3ki þ 2kiþ1)αiþ1

12(ki þ kiþ1)
, e�i ¼ �(2ki þ 3kiþ1)αi þ kiαiþ1

12(ki þ kiþ1)

Due to the sparse nature of both the left and right side solver matrices, this equation can be stored in vector
form extracting only the populated diagonal vectors a, b, c, d , e and f along with the temperature vectors
T m�1 and T m. The penta-diagonal matrix can be solved efficiently using a row reduction algorithm conceptually
similar to the Thomas algorithm, Askar and Karawia (2015), Benkert and Fischer (2007). The method can be
accelerated by pre-computing the algorithm factors σ, ϕ, ω, ρ and ψ and reusing these during each iteration.
This acceleration technique is only valid if the material properties, spatial step and temporal step remain constant
throughout the simulation. In such cases, the method can additionally be parallelised by stacking temperature
vectors horizontally and applying the row-wise algorithm to all temperatures simultaneously. This is recom-
mended when analysing infra-red thermography, allowing concurrent post-processing of multiple pixels.
The penta-diagonal inversion algorithm applies successive row operations to reduce the LHS matrix to a lower

diagonal form. The RHS is then solved by standard matrix multiplication to give the vector ω, followed by
forward substitution of the diagonal LHS.

1 0 0 0 � � �
σ1 1 0 0 � � �
ϕ2 σ2 1 0 � � �
0 ϕ3 σ3 1 � � �
..
. ..

. ..
. ..

. . .
.

0
BBBBB@

1
CCCCCA

Tm
0

Tm
1

Tm
2

Tm
3

..

.

0
BBBBB@

1
CCCCCA ¼

ωm�1
0

ωm�1
1

ωm�1
2

ωm�1
3

..

.

0
BBBBB@

1
CCCCCA (40)

σi ¼
cn
ψn

, i ¼ n

ci � ϕiþ1ρi
ψ i

, i ¼ n� 1, . . . , 1

8>><
>>:

ϕi ¼
ei
ψ i

, i ¼ n, . . . , 2

ρi ¼
bn�1, i ¼ n� 1

bi � σiþ2 di, i ¼ n� 2, . . . , 0

	

ωi ¼

y mn
ψn

, i ¼ n

ymn�1 � ωn ρn�1

ψn�1
, i ¼ n� 1

y mi � ωiþ2 di � ωiþ1 ρi
ψ i

, i ¼ n� 2, . . . , 0

8>>>>>><
>>>>>>:

ψ i ¼
an, i ¼ n

an�1 � σn ρn�1, i ¼ n� 1

ai � ϕiþ2 di � σiþ1 ρi, i ¼ n� 2, . . . , 0

8><
>:

Numerical results and discussion

The penta-diagonal scheme has been validated against the same analytic solutions used in the impulse response
method above. The spatial gradient from the temperature vector was used to extract the numerical heat flux at
the surface. Figure 8 shows the performance of the numerical scheme, along with a comparison to the impulse
response results. Following the same process as the data in Figure 7, the surface temperature for the five layer
laminate, T5, was applied in each case. A numerical model was built for each of the different nominal laminates,
using the same layer configurations and material properties as shown in Figure 6. The temperature was specified
as an upper boundary condition in the numerical simulation. The extracted surface heat flux is then directly
comparable to the calculation in Figure 7.
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The calculated flux in the numerical model compares well to the reference impulse response. RMSE O(10�3)
across all test cases confirms the suitability of the penta-digonal scheme for multilayer applications. The small dif-
ference is seen between the numerical result and impulse response due to the method of flux calculation in the
numerical method. The spatial gradient is used in the calculation, which is dependent on the spatial interval of
the numerical scheme. A trade off is required between accuracy and computation cost of the solver. Shown in
Figure 8, the numerical result suffers most in the early time steps because the thermal gradient must first be

Figure 8. Multilayer laminate heat flux comparison of the numerical penta-diagonal scheme and the impulse

response solutions.

Table 3. Features and capabilities of the different methods to analyse multilayer heat transfer data.

Features and Capability Single Layer
Impulse Response

Multilayer Impulse
Response

Multilayer
Numerical

Calculation ease and simplicity

High speed frequency domain calculation

Support for parallel processing of many sensors

Support for advanced multilayer thin film gauges

Support for future embedded sensor measurements

Handle non-uniform or time varying material properties

Handle time varying back surface boundary conditions

Not restricted by the semi-infinite test duration

Variable frequency or signal length without padding
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established. This error is not seen in the impulse response because the method is better able to handle the step
discontinuity in heat flux at time zero.
The performance of the numerical calculation can be improved by using a non-zero temperature profile to

initialise the numerical scheme. An initial depth temperature profile equivalent to unit step heat flux over the
first time interval, given by Equation 33, was used to improve the early flux calculation. The penta-diagonal
method has suitable accuracy over the required data post-processing window and offers a valid alternative to
the impulse response.
Figure 8 confirms the penta-diagonal scheme can be used to supplement or replace the impulse response cal-

culation. It has the advantage that time varying material properties can be simulated and, a signal of any length
or sampling frequency can be used without recalculation of the response filters. Control over both the front and
back surface boundary conditions additionally allows the semi-infinite limitation to be removed, if this additional
measurement data is available. The ability to support parallel post-processing of multiple sensors is a useful
feature of the numerical approach. However, the small time step and spatial step required to support high fre-
quency data sampling adds notable computational cost. Table 3 compares the features and capabilities of the dis-
cussed methods, showing the respective disadvantages and benefits of each.

Conclusions

Heat flux measurements in short duration aero-thermal tests are commonly performed using the impulse
response method. To simply the post-processing of this calculation, many users choose to assume a single,
uniform, isotropic material and define the impulse response using the Oldfield unit step method. In reality,
modern sensor constructions with test substrate and adhesives form a laminate with significantly different
behaviour.
Multilayer analytic solutions were presented and validated, allowing direct calculation of the laminate surface

functions. These solutions were used to analyse the impact of a single layer assumption. This common simplifica-
tion introduced a 30:47% peak error with time averaged error of 6:71% over a four second test, corresponding
to the permissible semi-infinite duration of the substrate in this case. These errors can be removed by simply
replacing the impulse response basis functions with the correct multilayer solution. Two analytic solution
methods have been presented and the second transmission-reflection method is easily implemented to find the
upgraded filter inputs.
The uncertainty in impulse response analysis, arising from the thin film manufacturing tolerances, was ana-

lysed. The material thickness tolerances were shown to have negligible effect on the calculated heat flux.
Variation in the material properties caused discrepancies ranging up to 10:35%. Although significant, this is
notably less than the error caused by incorrect filter specification.
To support the calculation of time varying material properties, a numerical Crank-Nicolson method was

also demonstrated for multilayer materials. This improved numerical scheme was validated against the ana-
lytic solutions and performed well across the test cases. Removing the semi-infinite and time invariant lim-
itations, inherent to the impulse response, the numerical method offers a valid alternative for analysing heat
transfer data.
Given the speed and simplicity of the impulse response method, in cases where the limitations of time invari-

ance hold, this method should be preferred. Whenever possible, the response filter derivation should use the
multilayer functions that best represent the true construction of the test article.

Nomenclature

t Time (s)
s Laplace domain variable (−)
T Time domain temperature (zero to initial conditions) (K )
q Time domain heat flux (W=m2)
h Time domain impulse response (−)
ϕ Laplace domain temperature (zero to initial conditions) (−)
ψ Laplace domain heat flux (−)
x 1D spatial position, measured from the upper surface (m)
N Integer layer count of the laminate (−)
α Material thermal diffusivity (m2=s)
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k Material thermal conductivity (W=mK)
OTI Oxford Thermofluids Institute
LHS Left Hand Side
RHS Right Hand Side
RMSE Root Mean Square Error
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